Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Front Immunol, v. 14, 1269336, fev. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5295

ABSTRACT

The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.

2.
Front Immunol ; 14: 1268998, 2023.
Article in English | MEDLINE | ID: mdl-38143743

ABSTRACT

The World Health Organization (WHO) recognizes schistosomiasis as one of the Neglected Tropical Diseases targeted for global elimination in the 2030 Agenda of the Sustainable Development Goals. In Brazil, schistosomiasis mansoni is considered a public health problem, particularly prevalent among vulnerable populations living in areas with poor environmental and sanitary conditions. In 2022, the WHO published a Guideline encompassing recommendations to assist national programs in endemic countries in achieving morbidity control, eliminating schistosomiasis as a public health problem, and advancing towards interrupting transmission. The perspectives presented here, collectively prepared by members of the Oswaldo Cruz Foundation's (Fiocruz) Schistosomiasis Translational Program (FioSchisto), along with invited experts, examine the feasibility of the WHO recommendations for the Brazilian settings, providing appropriate recommendations for public health policies applicable to the epidemiological reality of Brazil, and suggests future research to address relevant issues. In Brazil, the provision of safe water and sanitation should be the key action to achieve schistosomiasis elimination goals. The agencies involved in measures implementation should act together with the Primary Care teams for planning, executing, monitoring, and evaluating actions in priority municipalities based on their epidemiological indicators. Host snails control should prioritize judicious ecological interventions at breeding sites. The Information, Education, and Communication (IEC) strategy should be associated with water and sanitation and other control actions, actively involving school community. To identify infected carriers, FioSchisto recommends a two-stage approach of immunological and molecular tests to verify transmission interruption during the intervention and beyond. Praziquantel administration should be done under medical supervision at the Primary Care level. MDA should be considered in exceptional settings, as a measure of initial attack strategy in locations presenting high endemicity, always integrated with water and sanitation, IEC, and snail control. To assist decision-making, as well as the monitoring and evaluation of strategic actions, there is a need for an Information System. FioSchisto considers this systematization essential to make investments in strategic research to support the improvement of schistosomiasis control actions. Efforts toward schistosomiasis elimination in Brazil will succeed with a paradigm shift from the vertical prescriptive framework to a community-centered approach involving intersectoral and interdisciplinary collaboration.


Subject(s)
Schistosomiasis , Humans , Brazil/epidemiology , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Praziquantel , World Health Organization , Water
3.
Immunol Lett ; 260: 73-80, 2023 08.
Article in English | MEDLINE | ID: mdl-37315848

ABSTRACT

Shrimp is among the most sensitizing food allergens and has been associated with many anaphylaxis reactions. However, there is still a shortage of studies that enable a systematic understanding of this disease and the investigation of new therapeutic approaches. This study aimed to develop a new experimental model of shrimp allergy that could enable the evaluation of new prophylactic treatments. BALB/c mice were subcutaneously sensitized with 100 µg of shrimp proteins of Litopenaeus vannamei adsorbed in 1 mg of aluminum hydroxide on day 0, and a booster (100 µg of shrimp proteins only) on day 14. The oral challenge protocol was based on the addition of 5 mg/ml of shrimp proteins to water from day 21 to day 35. Analysis of shrimp extract content detected at least 4 of the major allergens reported to L. vannamei. In response to the sensitization, allergic mice showed significantly enhanced IL-4 and IL-10 production in restimulated cervical draining lymph node cells. High detection of serum anti-shrimp IgE and IgG1 suggested the development of allergies to shrimp while Passive Cutaneous Anaphylaxis assay revealed an IgE-mediated response. Immunoblotting analysis revealed that Allergic mice developed antibodies to multiple antigens present in the shrimp extract. These observations were supported by the detection of anti-shrimp IgA production in intestinal lavage samples and morphometric intestinal mucosal changes. Therefore, this experimental protocol can be a tool to evaluate prophylactic and therapeutic approaches.


Subject(s)
Anaphylaxis , Food Hypersensitivity , Animals , Mice , Immunoglobulin E , Allergens , Plant Extracts
4.
Int J Pharm ; 639: 122965, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37084836

ABSTRACT

Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4266.5 ± 38.6 µg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4 °C and 25 °C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.


Subject(s)
Ivermectin , Nanocapsules , Humans , Ivermectin/pharmacology , Ivermectin/chemistry , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Nanocapsules/chemistry , Polymers , Polyesters/chemistry
5.
Front Immunol ; 14: 1269336, 2023.
Article in English | MEDLINE | ID: mdl-38464672

ABSTRACT

The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.


Subject(s)
Schistosomiasis mansoni , Humans , Mice , Animals , Epitopes , Macaca mulatta , Peptides , Vaccination , Mammals
6.
Nanomaterials (Basel) ; 11(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917456

ABSTRACT

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.

7.
Front Immunol ; 12: 624191, 2021.
Article in English | MEDLINE | ID: mdl-33777004

ABSTRACT

In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.


Subject(s)
Hemostasis , Intercellular Signaling Peptides and Proteins/metabolism , Protozoan Vaccines/administration & dosage , Schistosoma mansoni/immunology , Schistosomiasis mansoni/prevention & control , Systems Biology , Animals , Cercaria/immunology , Disease Models, Animal , Female , Gene Expression Profiling , Hemostasis/genetics , Host-Parasite Interactions , Intercellular Signaling Peptides and Proteins/genetics , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/parasitology , Mice, Inbred C57BL , Microarray Analysis , Protozoan Vaccines/immunology , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/parasitology , Th1-Th2 Balance , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/parasitology , Time Factors , Transcriptome , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
8.
J Control Release ; 329: 758-761, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33038449

ABSTRACT

Ivermectin is an FDA-approved broad-spectrum antiparasitic agent with demonstrated antiviral activity against a number of DNA and RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite this promise, the antiviral activity of ivermectin has not been consistently proven in vivo. While ivermectin's activity against SARS-CoV-2 is currently under investigation in patients, insufficient emphasis has been placed on formulation challenges. Here, we discuss challenges surrounding the use of ivermectin in the context of coronavirus disease-19 (COVID-19) and how novel formulations employing micro- and nanotechnologies may address these concerns.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Carriers/chemistry , Ivermectin/therapeutic use , Nanoparticles/chemistry , SARS-CoV-2 , Administration, Inhalation , Administration, Oral , Aerosols , Antiviral Agents/administration & dosage , Drug Compounding , Drug Therapy, Combination , Humans , Ivermectin/administration & dosage , Randomized Controlled Trials as Topic , SARS-CoV-2/drug effects , Treatment Outcome
9.
Nanomaterials, v. 11, n. 4, 931, abr. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3695

ABSTRACT

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.

10.
Front Immunol, v. 12, 624191, mar. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3648

ABSTRACT

In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.

11.
Front Immunol, v. 11, 624613, mar. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3645

ABSTRACT

The radiation-attenuated cercarial vaccine remains the gold standard for the induction of protective immunity against Schistosoma mansoni. Furthermore, the protection can be passively transferred to naïve recipient mice from multiply vaccinated donors, especially IFNgR KO mice. We have used such sera versus day 28 infection serum, to screen peptide arrays and identify likely epitopes that mediate the protection. The arrays encompassed 55 secreted or exposed proteins from the alimentary tract and tegument, the principal interfaces with the host bloodstream. The proteins were printed onto glass slides as overlapping 15mer peptides, reacted with primary and secondary antibodies, and reactive regions detected using an Agilent array scanner. Pep Slide Analyzer software provided a numerical value above background for each peptide from which an aggregate score could be derived for a putative epitope. The reactive regions of 26 proteins were mapped onto crystal structures using the CCP4 molecular graphics, to aid selection of peptides with the greatest accessibility and reactivity, prioritizing vaccine over infection serum. A further eight MEG proteins were mapped to regions conserved between family members. The result is a list of priority peptides from 44 proteins for further investigation in multiepitope vaccine constructs and as targets of monoclonal antibodies.

12.
Article in English | MEDLINE | ID: mdl-32903718

ABSTRACT

On the surface of the Leishmania promastigote, phosphoglycans (PG) such as lipophosphoglycan (LPG), proteophosphoglycan (PPG), free phosphoglycan polymers (PGs), and acid phosphatases (sAP), are dominant and contribute to the invasion and survival of Leishmania within the host cell by modulating macrophage signaling and intracellular trafficking. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by the LPG2 gene. Aiming to investigate the role of PG-containing molecules in Leishmania infantum infection process, herein we describe the generation and characterization of L. infantum LPG2-deficient parasites. This gene was unexpectedly identified as duplicated in the L. infantum genome, which impaired gene targeting using the conventional homologous recombination approach. This limitation was circumvented by the use of CRISPR/Cas9 technology. Knockout parasites were selected by agglutination assays using CA7AE antibodies followed by a lectin (RCA 120). Five clones were isolated and molecularly characterized, all revealing the expected edited genome, as well as the complete absence of LPG and PG-containing molecule expression. Finally, the deletion of LPG2 was found to impair the outcome of infection in human neutrophils, as demonstrated by a pronounced reduction (~83%) in intracellular load compared to wild-type parasite infection. The results obtained herein reinforce the importance of LPG and other PGs as virulence factors in host-parasite interactions.


Subject(s)
Leishmania infantum , Leishmania major , CRISPR-Cas Systems , Gene Duplication , Gene Editing , Glycosphingolipids , Humans , Leishmania infantum/genetics , Membrane Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
13.
Int J Pharm ; 576: 118997, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31893542

ABSTRACT

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Growth factor therapy has emerged as novel therapeutic strategy under investigation for CVD. In this sense, adrenomedullin-2 (ADM-2) has been recently identified as a new angiogenic factor able to regulate the regional blood flow and cardiovascular function. However, the therapeutic value of ADM-2 is limited by its short biological half-life and low plasma stability. Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles have been investigated as growth factor delivery systems for cardiac repair. In this study, we aimed to develop PLGA nanoparticles containing ADM-2 intended for therapeutic angiogenesis. PLGA nanoparticles containing ADM-2 were prepared by a double emulsion modified method, resulting in 300 nm-sized stable particles with zeta potential around - 30 mV. Electron microscopy analysis by SEM and TEM revealed spherical particles with a smooth surface. High encapsulation efficiency was reached (ca.70%), as quantified by ELISA. ADM-2 associated to polymer nanoparticles was also determined by EDS elemental composition analysis, SDS-PAGE and LC-MS/MS for peptide identification. In vitro release assays showed the sustained release of ADM-2 from polymer nanoparticles for 21 days. Cell viability experiments were performed in J774 macrophages and H9c2 cardiomyocyte cells, about which PLGA nanoparticles loaded with ADM-2 did not cause toxicity in the range 0.01-1 mg/ml. Of note, encapsulated ADM-2 significantly induced cell proliferation in EA.hy926 endothelial cells, indicating the ADM-2 bioactivity was preserved after the encapsulation process. Collectively, these results demonstrate the feasibility of using PLGA nanoparticles as delivery systems for the angiogenic peptide ADM-2, which could represent a novel approach for therapeutic angiogenesis in CVD using growth factor therapy.


Subject(s)
Angiogenesis Inducing Agents/administration & dosage , Cell Proliferation/drug effects , Drug Carriers , Endothelial Cells/drug effects , Peptide Hormones/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/toxicity , Animals , Cell Line , Delayed-Action Preparations , Drug Compounding , Drug Liberation , Humans , Kinetics , Mice , Nanoparticles , Peptide Hormones/chemistry , Peptide Hormones/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer/toxicity , Rats , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Solubility
14.
Int J Parasitol, v. 49, n. 8, p. 593-599, jul. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2793

ABSTRACT

Schistosoma mansoni venom allergen-like proteins (SmVALs) are part of a diverse protein superfamily partitioned into two groups (group 1 and group 2). Phylogenetic analyses of group 1 SmVALs revealed that members could be segregated into subclades (A–D); these subclades share similar gene expression patterns across the parasite lifecycle and immunological cross-reactivity. Furthermore, whole-mount in situ hybridization demonstrated that the phylogenetically, transcriptionally and immunologically-related SmVAL4, 10, 18 and 19 (subclade C) were all localized to the pre-acetabular glands of immature cercariae. Our results suggest that SmVAL group 1 phylogenetic relationships, stage-specific transcriptional profiles and tissue localization are predictive of immunological cross-reactivity.

15.
Int. J. Parasitol. ; 49(8): p.593-599, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16098

ABSTRACT

Schistosoma mansoni venom allergen-like proteins (SmVALs) are part of a diverse protein superfamily partitioned into two groups (group 1 and group 2). Phylogenetic analyses of group 1 SmVALs revealed that members could be segregated into subclades (A–D); these subclades share similar gene expression patterns across the parasite lifecycle and immunological cross-reactivity. Furthermore, whole-mount in situ hybridization demonstrated that the phylogenetically, transcriptionally and immunologically-related SmVAL4, 10, 18 and 19 (subclade C) were all localized to the pre-acetabular glands of immature cercariae. Our results suggest that SmVAL group 1 phylogenetic relationships, stage-specific transcriptional profiles and tissue localization are predictive of immunological cross-reactivity.

16.
Parasit Vectors ; 10(1): 223, 2017 May 08.
Article in English | MEDLINE | ID: mdl-28482920

ABSTRACT

BACKGROUND: Schistosoma mansoni venom allergen-like protein (SmVAL) is a gene family composed of 29 members divided into group 1 encoding proteins potentially secreted, and group 2 encoding intracellular components. Some members were found to be upregulated in the transition of germ ball - cercariae - day 3 schistosomula, suggesting that group 1 SmVAL proteins are associated with the invasion of the human host, although their functions are not completely established. Recently, we have described the localization of SmVAL7 (group 1) and SmVAL6 (group 2) transcripts in the oesophageal gland and in the oral and ventral suckers of adult parasites, respectively. The expression patterns of the two genes suggest that SmVAL7 protein plays a role in the blood-feeding process while SmVAL6 is associated with the parasite attachment and movement in the vasculature. In this way, searching for additional secreted SmVAL proteins that could be involved in key processes from skin penetration to the beginning of blood-feeding, we investigated the tissue localization of SmVAL4, 13, 16 and 24 by whole-mount in situ hybridization (WISH). RESULTS: We report here the localization of group 1 SmVAL4 and 24 transcripts in the pre-acetabular glands of developing germ balls. Time course experiments of in vitro cultured schistosomula after cercariae transformation demonstrated that SmVAL4 protein is secreted during the first 3 h of in vitro culture, correlating with the emptying of acetabular glands as documented by confocal microscopy. In addition, the localization of SmVAL13 transcripts in adult male anterior oesophageal gland suggests that the respective protein may be involved in the first steps of the blood-feeding process. SmVAL16 was localized close to the neural ganglia and requires further investigation. CONCLUSIONS: Our findings demonstrate that SmVAL proteins have localizations that place them in strategic positions to be considered as potential vaccine candidates as some members are exposed to interaction with the immune system and may participate in key processes of mammalian invasion and parasitism establishment.


Subject(s)
Antigens, Helminth/genetics , Gene Expression , Life Cycle Stages/genetics , Schistosoma mansoni/genetics , Acetabularia/genetics , Allergens/chemistry , Allergens/genetics , Animals , Cercaria/genetics , Host-Pathogen Interactions/genetics , Humans , In Situ Hybridization/methods , Schistosoma mansoni/chemistry , Schistosoma mansoni/growth & development , Schistosoma mansoni/physiology , Snails/parasitology , Up-Regulation , Venoms/chemistry
17.
Parasites Vectors ; 10: 223, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15204

ABSTRACT

Background: Schistosoma mansoni venom allergen-like protein (SmVAL) is a gene family composed of 29 members divided into group 1 encoding proteins potentially secreted, and group 2 encoding intracellular components. Some members were found to be upregulated in the transition of germ ball - cercariae - day 3 schistosomula, suggesting that group 1 SmVAL proteins are associated with the invasion of the human host, although their functions are not completely established. Recently, we have described the localization of SmVAL7 (group 1) and SmVAL6 (group 2) transcripts in the oesophageal gland and in the oral and ventral suckers of adult parasites, respectively. The expression patterns of the two genes suggest that SmVAL7 protein plays a role in the blood-feeding process while SmVAL6 is associated with the parasite attachment and movement in the vasculature. In this way, searching for additional secreted SmVAL proteins that could be involved in key processes from skin penetration to the beginning of blood-feeding, we investigated the tissue localization of SmVAL4, 13, 16 and 24 by whole-mount in situ hybridization (WISH). Results: We report here the localization of group 1 SmVAL4 and 24 transcripts in the pre-acetabular glands of developing germ balls. Time course experiments of in vitro cultured schistosomula after cercariae transformation demonstrated that SmVAL4 protein is secreted during the first 3 h of in vitro culture, correlating with the emptying of acetabular glands as documented by confocal microscopy. In addition, the localization of SmVAL13 transcripts in adult male anterior oesophageal gland suggests that the respective protein may be involved in the first steps of the blood-feeding process. SmVAL16 was localized close to the neural ganglia and requires further investigation. Conclusions: Our findings demonstrate that SmVAL proteins have localizations that place them in strategic positions to be considered as potential vaccine candidates as some members are exposed to interaction with the immune system and may participate in key processes of mammalian invasion and parasitism establishment.

SELECTION OF CITATIONS
SEARCH DETAIL
...